import java.util.Arrays;
/**
* @desc 弗洛伊德算法
*/
public class FloydAlgorithm {
public static void main(String[] args) {
char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
int[][] matrix = new int[vertex.length][vertex.length];
final int N = 65535;
matrix[0] = new int[]{0, 5, 7, N, N, N, 2};
matrix[1] = new int[]{5, 0, N, 9, N, N, 3};
matrix[2] = new int[]{7, N, 0, N, 8, N, N};
matrix[3] = new int[]{N, 9, N, 0, N, 4, N};
matrix[4] = new int[]{N, N, 8, N, 0, 5, 4};
matrix[5] = new int[]{N, N, N, 4, 5, 0, 6};
matrix[6] = new int[]{2, 3, N, N, 4, 6, 0};
FloydGraph graph = new FloydGraph(vertex.length, matrix, vertex);
graph.floyd();
graph.show();
}
}
class FloydGraph {
private char[] vertex; // 存放顶点的数组
private int[][] dis; // 保存,从各个顶点出发到其它顶点的距离,最后的结果也是保留在该数组
private int[][] pre; // 保存到达目标顶点的前驱顶点
public FloydGraph(int length, int[][] matrix, char[] vertex) {
this.vertex = vertex;
this.dis = matrix;
this.pre = new int[length][length];
// 对pre数组进行初始化,注意存放的是前驱顶点的下标
for (int i = 0; i < length; i++) {
Arrays.fill(pre[i], i);
}
}
// 弗洛伊德算法
public void floyd() {
int len; // 变量保存距离
// 从中间顶点遍历,就是中间顶点的下标[A,B,C,D,E,F,G]
for (int k = 0; k < dis.length; k++) {
// 从i顶点出发,[A,B,C,D,E,F,G]
for (int i = 0; i < dis.length; i++) {
// 到达j顶点,[A,B,C,D,E,F,G]
for (int j = 0; j < dis.length; j++) {
len = dis[i][k] + dis[k][j]; // 求出从i顶点出发,经过k中间顶点,到达j顶点距离
if (len < dis[i][j]) { // 如果len小于dis[i][j]
dis[i][j] = len; // 更新距离
pre[i][j] = pre[k][j]; // 更新前驱顶点
}
}
}
}
}
// show
public void show() {
char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
for (int k = 0; k < dis.length; k++) {
for (int i = 0; i < dis.length; i++) {
System.out.print(vertex[pre[k][i]] + " ");
}
System.out.println();
// 最短路径
for (int i = 0; i < dis.length; i++) {
System.out.print("<" + vertex[k] + "," + vertex[i] + ">=" + dis[k][i] + ",");
}
System.out.println();
}
System.out.println();
}
}
弗洛伊德算法
发布于 2020-08-07 1.85k 次阅读
叨叨几句... NOTHING