import java.time.LocalDateTime;
import java.util.Arrays;
import java.util.Random;
/**
* @desc 归并排序
* 利用分治策略,分而治之,即先分再合
* (1)分
* A.找到中间下标mid
* B.向左递归
* C.向右递归
* (2)治
* A.将左右两边(有序)的数据按照规则填充到temp数组,直到左右两边的有序序列有一边处理完毕为止
* B.把剩余数据的一边的数据依次全部填充到temp
* C.将temp数组的元素拷贝到arr(注意,并不是每次都拷贝所有!!!)
*
* 案例:
* {8, 4, 5, 7, 1, 3, 6, 2}
*/
public class MergeSort {
public static void main(String[] args) {
int[] arr = {8, 4, 5, 7, 1, 3, 6, 2};
/*int[] arr = new int[8000000];
for (int i = 0; i < 8000000; i++) {
arr[i] = new Random().nextInt(8000000);
}*/
int[] temp = new int[arr.length]; // 归并排序需要额外的一个数组
System.out.println(LocalDateTime.now());
mergeSort(arr, 0, arr.length - 1, temp);
System.out.println(LocalDateTime.now());
System.out.println("arr=" + Arrays.toString(arr));
/*int[] arr = new int[8000000];
for (int i = 0; i < 8000000; i++) {
arr[i] = new Random().nextInt(8000000);
}
System.out.println(LocalDateTime.now());
int[] temp = new int[arr.length]; // 归并排序需要额外的一个数组
mergeSort(arr, 0, arr.length - 1, temp);
System.out.println(LocalDateTime.now());*/
}
private static void mergeSort(int[] arr, int left, int right, int[] temp) {
if (left < right) {
int mid = (left + right) / 2;
// 向左递归分解
mergeSort(arr, left, mid, temp);
// 向右递归分解
mergeSort(arr, mid + 1, right, temp);
// 合
merge(arr, left, mid, right, temp);
}
}
/**
*
* @param arr 排序原数组
* @param left 左边有序序列的初始下标
* @param mid 中间索引
* @param right 右边索引
* @param temp 做中转的数组
*/
private static void merge(int[] arr, int left, int mid, int right, int[] temp) {
// (一)
// 将左右两边(有序)的数据按照规则填充到temp数组
// 直到左右两边的有序序列有一边处理完毕为止
int i = left; // 左边有序序列的初始索引
int j = mid + 1; // 右边有序序列的初始索引
int t = 0;
while(i <= mid && j <= right) {
if (arr[i] <= arr[j]) { // 左边小,将左边的值放入temp
temp[t] = arr[i];
// 后移
t += 1;
i += 1;
} else { // 反之,将右边的值放入temp
temp[t] = arr[j];
// 后移
t += 1;
j += 1;
}
}
// (二)
// 把剩余数据的一边的数据依次全部填充到temp
while(i <= mid) { // 左边剩余
temp[t] = arr[i];
t += 1;
i += 1;
}
while (j <= right) { // 右边剩余
temp[t] = arr[j];
t += 1;
j += 1;
}
// (三)
// 将temp数组的元素拷贝到arr
// 注意,并不是每次都拷贝所有!!!
t = 0;
int tempLeft = left;
// 第1次合并,left=0, right=1
// 第2次合并,left=2, right=3
// 第3次合并,left=0, right=3
// ...
while (tempLeft <= right) { // 左边 <= 右边
arr[tempLeft] = temp[t];
t += 1;
tempLeft += 1;
}
}
}
归并排序
发布于 2020-08-07 1.24k 次阅读
叨叨几句... NOTHING