import java.util.Arrays;
/**
* @desc 普利姆算法
* 应用案例:修路问题
* <p>
* 思路分析
* 1.从<A>顶点开始处理=><A,G> 2
* A,C[7] A-G[2] A-B[5] =>
* 2.<A,G>开始,将A和G顶点和他们相邻的还没有访问的顶面进行处理=> <A,G,B>
* A-C[7] A-B[5] G-B[3] G-F[6]
* 3.<A,G,B>开始,将A,G,B顶点和他们相邻的还没有访问的顶面进行处理=> <A,G,B>
* A-C[7] G-E[4] G-F[6] B-D[9]
* ...
* 4.{A,G,B,E,F,D} -> C // 第6次大循环,对应边<A,C>权值:7 => <A,G,B,E,F,D,C>
*/
public class PrimAlgorithm {
public static void main(String[] args) {
char[] data = {'A','B','C','D','E','F','G'};
int verxs = data.length;
// 邻接矩阵
int[][] weight = new int[][] {
{10000,5,7,10000,10000,10000,2},
{5,10000,10000,9,10000,10000,3},
{7,10000,10000,10000,8,10000,10000},
{10000,9,10000,10000,10000,4,10000},
{10000,10000,8,10000,10000,5,4},
{10000,10000,10000,4,5,10000,6},
{2,3,10000,10000,4,6,10000}
};
// 创建MGraph对象
MGraph graph = new MGraph(verxs);
// 创建最小树
MinTree minTree = new MinTree();
minTree.createGraph(graph, verxs, data, weight);
// 输出
minTree.showGraph(graph);
// 测试普利姆算法
minTree.prim(graph, 0);
}
}
// 最小生成树
class MinTree {
public void prim(MGraph graph, int v) {
int[] visited = new int[graph.verxs];
visited[v] = 1; // 标记为已访问
// h1,h2记录两个顶点的下标
int h1 = -1;
int h2 = -1;
int minWeight = 10000; // 将minWeight初始成一个大数,后面遍历过程中,会被替换
for (int k = 1; k < graph.verxs; k++) { // 因为有graph.verxs个顶点,普利姆算法结束后,有graph.verxs-1边
// 这个是确定每一次生成的子圈,和哪个结点的距离最近
for (int i = 0; i < graph.verxs; i++) { // i表示被访问过的结点
for (int j = 0; j < graph.verxs; j++) { // j表示还没有被访问过的结点
if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
minWeight = graph.weight[i][j];
h1 = i;
h2 = j;
}
}
}
// 找到最小边
System.out.println("边<"+ graph.data[h1] + "," + graph.data[h2] +"> 权值:" + minWeight);
visited[h2] = 1; // 将这个点标记为已访问
minWeight = 10000;
}
}
/**
* 创建邻接矩阵
*
* @param graph 图对象
* @param verxs 图对应的顶点个数
* @param data 图的各个顶点的值
* @param weight 图的邻接矩阵
*/
public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) {
int i, j;
for (i = 0; i < verxs; i++) {
graph.data[i] = data[i];
for (j = 0; j < verxs; j++) {
graph.weight[i][j] = weight[i][j];
}
}
}
public void showGraph(MGraph graph) {
for (int i = 0; i < graph.weight.length; i++) {
System.out.println(Arrays.toString(graph.weight[i]));
}
}
}
class MGraph {
int verxs; // 表示图的结点
char[] data; // 存放结点个数
int[][] weight; // 存放边,就是我们的邻接矩阵
public MGraph(int verxs) {
this.verxs = verxs;
data = new char[verxs];
weight = new int[verxs][verxs];
}
}
普利姆算法
发布于 2020-08-07 3.53k 次阅读
叨叨几句... NOTHING